Développez l'apprentissage automatique prédictif avec Flink | Atelier du 18 déc. | S'inscrire
Following on from How to Work with Apache Kafka in Your Spring Boot Application, which shows how to get started with Spring Boot and Apache Kafka®, here I will demonstrate how to enable usage of Confluent Schema Registry and Avro serialization format in your Spring Boot applications.
Using Avro schemas, you can establish a data contract between your microservices applications.
The full source code is available for download on GitHub.
Version | Date | Date |
v1.0 | 7/31/19 | Initial revision |
As always, we’ll begin by generating a project starter. In this starter, you should enable “Spring for Apache Kafka” and “Spring Web Starter.”
Figure 1. Generate a new project with Spring Initializer.
<project> <dependencies> <!-- other dependencies --> <dependency> <groupId>io.confluent</groupId> <artifactId>kafka-schema-registry-client</artifactId> (1) <version>5.3.0</version> </dependency> <dependency> <groupId>org.apache.avro</groupId> <artifactId>avro</artifactId> (2) <version>1.8.2</version> </dependency> <dependency> <groupId>io.confluent</groupId> <artifactId>kafka-avro-serializer</artifactId> (3) <version>5.2.1</version> </dependency> <dependency> <groupId>io.confluent</groupId> <artifactId>kafka-streams-avro-serde</artifactId> <version>5.3.0</version> <exclusions> <exclusion> <groupId>org.slf4j</groupId> <artifactId>slf4j-log4j12</artifactId> </exclusion> </exclusions> </dependency> </dependencies> <repositories> <!-- other maven repositories the project --> <repository> <id>confluent</id> (4) <url>https://packages.confluent.io/maven/</url> </repository> </repositories> <plugins> <!-- other maven plugins in the project --> <plugin> <groupId>org.apache.avro</groupId> <artifactId>avro-maven-plugin</artifactId> <version>1.8.2</version> <executions> <execution> <phase>generate-sources</phase> <goals> <goal>schema</goal> </goals> <configuration> <sourceDirectory>src/main/resources/avro</sourceDirectory> (5) <outputDirectory>${project.build.directory}/generated-sources</outputDirectory> <stringType>String</stringType> </configuration> </execution> </executions> </plugin> </plugins> </project>
Your application will include the following components:
{
"namespace": "io.confluent.developer", (1)
"type": "record",
"name": "User",
"fields": [
{
"name": "name",
"type": "string",
"avro.java.string": "String"
},
{
"name": "age",
"type": "int"
}
]
}
@SpringBootApplication
public class SpringAvroApplication {
@Value("${topic.name}") (1)
private String topicName;
@Value("${topic.partitions-num}")
private Integer partitions;
@Value("${topic.replication-factor}")
private short replicationFactor;
@Bean
NewTopic moviesTopic() { (2)
return new NewTopic(topicName, partitions, replicationFactor);
}
public static void main(String[] args) {
SpringApplication.run(SpringAvroApplication.class, args);
}
}
@Service
@CommonsLog(topic = "Producer Logger")
public class Producer {
@Value("${topic.name}") (1)
private String TOPIC;
private final KafkaTemplate<String, User> kafkaTemplate;
@Autowired
public Producer(KafkaTemplate<String, User> kafkaTemplate) { (2)
this.kafkaTemplate = kafkaTemplate;
}
void sendMessage(User user) {
this.kafkaTemplate.send(this.TOPIC, user.getName(), user); (3)
log.info(String.format("Produced user -> %s", user));
}
}
Spring instantiates all these components during the application startup, and the application becomes ready to receive messages via the REST endpoint. The default HTTP port is 9080 and can be changed in the application.yaml configuration file.
@Service
@CommonsLog(topic = "Consumer Logger")
public class Consumer {
@Value("${topic.name}") (1)
private String topicName;
@KafkaListener(topics = "users", groupId = "group_id") (2)
public void consume(ConsumerRecord<String, User> record) {
log.info(String.format("Consumed message -> %s", record.value()));
}
}
@RestController
@RequestMapping(value = "/user") (1)
public class KafkaController {
private final Producer producer;
@Autowired
KafkaController(Producer producer) { (2)
this.producer = producer;
}
@PostMapping(value = "/publish")
public void sendMessageToKafkaTopic(@RequestParam("name") String name, @RequestParam("age") Integer age) {
this.producer.sendMessage(new User(name, age)); (3)
}
}
Tip: In this guide, I assume that you have the Java Development Kit (JDK) installed. If you don’t, I highly recommend using SDKMAN! to install it.
You’ll also need Confluent Platform 5.3 or newer installed locally. If you don’t already have it, follow the Confluent Platform Quick Start. Be sure to install the Confluent CLI as well (see step 4 in this section of the quick start).
confluent local start schema-registry
The Confluent CLI provides local mode for managing your local Confluent Platform installation. The Confluent CLI starts each component in the correct order.
You should see a similar output in your terminal.
In the examples directory, run ./mvnw clean package to compile and produce a runnable JAR. After that, you can run the following command:
java -jar target/kafka-avro-0.0.1-SNAPSHOT.jar
For simplicity, I like to use the curl command, but you can use any REST client (like Postman or the REST client in IntelliJ IDEA to):
curl -X POST -d 'name=vik&age=33' http://localhost:9080/user/publish
2019-06-06 22:52:59.485 INFO 28910 --- [nio-9080-exec-1] Producer Logger : Produced user -> {"name": "vik", "age": 33} 2019-06-06 22:52:59.559 INFO 28910 --- [ntainer#0-0-C-1] Consumer Logger : Consumed message -> {"name": "vik", "age": 33}
To use this demo application with Confluent Cloud, you are going to need the endpoint of your managed Schema Registry and an API key/secret. Both can be easily retrieved from the Confluent Cloud UI once you select an environment.
At least one Kafka cluster must be created to access your managed Schema Registry. Once you select the Schema Registry option, you can retrieve the endpoint and create a new API/secret.
An example Confluent Cloud configuration can find in application-cloud.yaml:
topic:
name: users
partitions-num: 6
replication-factor: 3
server:
port: 9080
spring:
kafka:
bootstrap-servers:
- mybootstrap.confluent.cloud:9092 (1)
properties:
# CCloud broker connection parameters
ssl.endpoint.identification.algorithm: https
sasl.mechanism: PLAIN
request.timeout.ms: 20000
retry.backoff.ms: 500
sasl.jaas.config: org.apache.kafka.common.security.plain.PlainLoginModule required username="ccloud_key" password="ccloud_secret"; (2)
security.protocol: SASL_SSL
# CCloud Schema Registry Connection parameter
schema.registry.url: https://schema-registry.aws.confluent.cloud (3)
basic.auth.credentials.source: USER_INFO (4)
schema.registry.basic.auth.user.info: sr_ccloud_key:sr_ccloud_key (5)
consumer:
group-id: group_id
auto-offset-reset: earliest
key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
value-deserializer: io.confluent.kafka.serializers.KafkaAvroDeserializer
producer:
key-serializer: org.apache.kafka.common.serialization.StringSerializer
value-serializer: io.confluent.kafka.serializers.KafkaAvroSerializer
template:
default-topic:
logging:
level:
root: info
To run this application in cloud mode, activate the cloud Spring profile. In this case, Spring Boot will pick up application-cloud.yaml configuration file that contains the connection to data in Confluent Cloud.
java -jar -Dspring.profiles.active=cloud target/kafka-avro-0.0.1-SNAPSHOT.jar
If this tutorial was helpful and you’re on the hunt for more on stream processing using Kafka Streams, ksqlDB, and Kafka, don’t forget to check out Kafka Tutorials. Feel free to reach out or ping me on Twitter should any questions come up along the way.
To get started with Spring using a more complete distribution of Apache Kafka, you can sign up for Confluent Cloud and use the promo code SPRING200 for an additional $200 of free Confluent Cloud usage.
This blog announces the general availability of Confluent Platform 7.8 and its latest key features: Confluent Platform for Apache Flink® (GA), mTLS Identity for RBAC Authorization, and more.
We covered so much at Current 2024, from the 138 breakout sessions, lightning talks, and meetups on the expo floor to what happened on the main stage. If you heard any snippets or saw quotes from the Day 2 keynote, then you already know what I told the room: We are all data streaming engineers now.