Ahorra un 25 % (o incluso más) en tus costes de Kafka | Acepta el reto del ahorro con Kafka de Confluent

Online Talk

Data Streaming and Retrieval-Augmented Generation (RAG) for Generative AI

Ver ahora

Available On-demand

Is your AI chatbot hallucinating? LLMs are a great foundational tool that has made AI accessible for everyone, but they lack real-time domain-specific data. Building cutting-edge GenAI applications requires an understanding of context around a query and generating relevant, accurate results.

This is where RAG comes in. RAG is a pattern that pairs prompts with real-time external data to improve LLM responses.

Join Confluent experts Andrew Sellers, Head of Technology Strategy, and Kai Waehner, Global Field CTO, as they deep dive into RAG and the 4 Steps for Building Event-Driven GenAI Applications. Register now to learn:

  • How to build a real-time, contextualized, and trustworthy knowledge base
  • Where a data streaming platform and Apache Flink® stream processing (with AI model inference) fit in the RAG architecture
  • Key steps of data augmentation, inference, workflows, and post-processing
  • How a RAG demo works, featuring an AI chatbot that provides personalized product recommendations—built using Confluent, OpenAI, ChatGPT-4, Flink, MongoDB, and D-ID

Andrew Sellers leads Confluent’s Technology Strategy Group, a team supporting strategy development, competitive analysis, and thought leadership.

Kai es Global Field CTO en Confluent. Sus áreas de especialización incluyen análisis de big data, machine learning, mensajería, integraciones, microservicios, internet de las cosas, procesamiento en streaming y blockchain. Kai también es el autor de decenas de artículos técnicos, da charlas en conferencias internacionales y comparte sus experiencias con las nuevas tecnologías en su blog (www.kai-waehner.de/blog).