Kafka in the Cloud: Why it’s 10x better with Confluent | Find out more
Change data capture is a popular method to connect database tables to data streams, but it comes with drawbacks. The next evolution of the CDC pattern, first-class data products, provide resilient pipelines that support both real-time and batch processing while isolating upstream systems...
Learn how the latest innovations in Kora enable us to introduce new Confluent Cloud Freight clusters, which can save you up to 90% at GBps+ scale. Confluent Cloud Freight clusters are now available in Early Access.
Learn how to contribute to open source Apache Kafka by writing Kafka Improvement Proposals (KIPs) that solve problems and add features! Read on for real examples.
When developing streaming applications, one crucial aspect that often goes unnoticed is the default partitioning behavior of Java and non-Java producers. This disparity can result in data mismatches and inconsistencies, posing challenges for developers.
Confluent Platform 7.4 now includes SBOMs, which gives customers more transparency and control over their software deployments.
Learn when to consider expanding to multiple Apache Kafka clusters, how to manage the operations for large clusters, and tools and resources for efficient operations.
The term “event” shows up in a lot of different Apache Kafka® arenas. There’s “event-driven design,” “event sourcing,” “designing events,” and “event streaming.” What is an event, and what is the difference between the role an event has to play in each of these contexts?
We are proud to announce the release of Apache Kafka® 3.5.0. This release contains many new features and improvements. This blog post will highlight some of the more prominent features.
ChatGPT and data streaming can work together for any company. Learn a basic framework for using GPT-4 and streaming to build a real-world production application.
GitOps can work with policy-as-code systems to provide a true self-service model for managing Confluent resources. Policy-as-code is the practice of permitting or preventing actions based on rules and conditions defined in code. In the context of GitOps for Confluent, suitable policies...
Amazon DynamoDB is a fully managed, serverless, key-value NoSQL database service that is highly available and scalable. It is designed to deliver single-digit millisecond query performance at any scale. It offers a fast and flexible way to store...
Our new PII Detection solution enables you to securely utilize your unstructured text by enabling entity-level control. Combined with our suite of data governance tools, you can execute a powerful real-time cyber defense strategy.
Announcing the latest updates to Confluent’s cloud-native data streaming platform: Kora Engine, Data Quality Rules, Custom Connectors, Streaming Sharing, and more.
Take a tour of the internals of Confluent’s Apache Kafka® service, powered by Kora: the next-generation, cloud-native streaming engine.
Companies are looking to optimize cloud and tech spend, and being incredibly thoughtful about which priorities get assigned precious engineering and operations resources. “Build vs. Buy” is being taken seriously again. And if we’re honest, this probably makes sense. There is a lot to optimize.
Why do our customers choose Confluent as their trusted data streaming platform? In this blog, we will explore our platform’s reliability, durability, scalability, and security by presenting some remarkable statistics and providing insights into our engineering capabilities.
Operating Kafka at scale can consume your cloud spend and engineering time. And operating everyday tasks like scaling or deploying new clusters can be complex and require dedicated engineers. This post focuses on how Confluent Cloud is 1) Resource Efficient, 2) Fully Managed, and 3) Complete.