[Webinar] Bringing Flink to On-Prem and Private Clouds. Register Now
The world generates an unfathomable amount of data, and it continues to multiply at a staggering rate. Companies have quickly shifted from batch processing to data streams to keep up with the ever growing amounts of big data. In this article, we’ll cover what data streaming is, how it differs from batch processing, and how your organization can benefit from real-time streams of data.
Stream processing, also known as data streaming, is a software paradigm that ingests, processes, and manages continuous streams of data while they're still in motion. Data is rarely static, and the ability to empower data as it's generated has become crucial to the success of today's world.
Modern data processing has progressed from legacy batch processing of data towards working with real-time data stream processing. Similarly, consumers now stream data like movies on Netflix or songs on Spotify instead of waiting for the entire movie or album to be downloaded. The ability to process data streams in real-time is a key part in the world of big data.
Read on to learn a little more about how stream processing helps with real-time analyses and data ingestion.
Legacy infrastructure was much more structured because it only had a handful of sources that generated data and the entire system could be architected in a way to specify and unify the data and data structures.
Modern data is generated by an infinite amount of sources whether it’s from hardware sensors, servers, mobile devices, applications, web browsers, internal and external and it’s almost impossible to regulate or enforce the data structure or control the volume and frequency of the data generated. Applications that analyze and process data streams need to process one data packet at a time, in sequential order. Each data packet generated will include the source and timestamp to enable applications to work with data streams.
Applications working with data streams will always require two main functions: storage and processing. Storage must be able to record large streams of data in a way that is sequential and consistent. Processing must be able to interact with storage, consume, analyze and run computation on the data.
This also brings up additional challenges and considerations when working with data streams. Many platforms and tools are now available to help companies build streaming data applications.
All industries that are generating data continuously will benefit from processing streaming data. The use cases typically start from internal IT systems monitoring and reporting like collecting the data streams generated by employees interacting with their web browser and devices and the data generated by its applications and servers. The operations of the company and its products benefit from data stream processing of sensors, equipment, data centers and many more sources.
Since its customers and partners also consume and process streaming data, the ability to send, receive, process streaming data becomes increasingly important. As more companies rely on its data, its ability to process, analyze, apply machine learning and artificial intelligence to streaming data is crucial.
The key differences in selecting how to house all the data in an organization comes down to these considerations:
###Here’s a breakdown of major differences between batch processing, real-time data processing, and streaming data:
Batch Data Processing | Real-Time Data Processing | Streaming Data | |
---|---|---|---|
Hardware | Most storage and processing resources requirement to process large batches of data. | Less storage required to process the current or recent set of data packets. Less computational requirements. | Less storage required to process current data packets. More processing resources required to “stay awake” in order to meet real-time processing guarantees |
Performance | Latency could be minutes, hours, or days | Latency needs to be in seconds or milliseconds | Latency must be guaranteed in milliseconds |
Data set | Large batches of data | Current data packet or a few of them | Continuous streams of data |
Analysis | Complex computation and analysis of a larger time frame | Simple reporting or computation | Simple reporting or computation |
Skalierbarkeit: Bei Systemausfällen können die von den einzelnen Geräten kommenden Protokolldaten von einer Übertragungsrate von Kilobit pro Sekunde auf Megabit pro Sekunde ansteigen und zu Gigabit pro Sekunde aggregiert werden. Das Hinzufügen von Kapazitäten, Ressourcen und Servern während der Skalierung von Anwendungen geschieht blitzschnell und erhöht die generierte Menge an Rohdaten exponentiell. Die Entwicklung von skalierbaren Anwendungen ist essenziell, wenn mit Streaming-Daten gearbeitet wird.
Reihenfolge: Die Bestimmung der Datenfolge in Datenströmen ist nicht außer Acht zu lassen, denn für viele Anwendungen ist sie von großer Bedeutung. Ein Chat oder ein Gespräch würden ohne die richtige Reihenfolge auch keinen Sinn ergeben.
Wenn Entwickler versuchen, ein Problem zu lösen, indem sie sich die aggregierten Protokolldaten anschauen, muss jede Zeile an der richtigen Stelle stehen. Oft gibt es Diskrepanzen zwischen der Reihenfolge des generierten Datenpakets und der Reihenfolge, in der es am Zielort ankommt. Auch bei Zeitstempeln und Uhren von Geräten, die Daten generieren, kommt es oft zu Abweichungen. Bei der Analyse von Datenströmen müssen Anwendungen die Voraussetzungen für ACID-Transaktionen berücksichtigen.
Konsistenz und Dauerhaftigkeit: Datenkonsistenz und Datenzugriff stellen immer ein großes Problem bei der Verarbeitung von Datenströmen dar. Die Daten, die zu einem bestimmten Zeitpunkt gelesen werden, könnten bereits in einem Rechenzentrum irgendwo anders auf der Welt modifiziert worden oder veraltet sein. Die Dauerhaftigkeit von Daten bildet auch eine Herausforderung bei der Anwendung von Datenströmen in der Cloud.
Fehlertoleranz und Datengarantien: Diese beiden Aspekte spielen bei der Arbeit mit Daten, bei der Datenstromverarbeitung und bei allen verteilten Systemen eine wichtige Rolle. Sind die vorhandenen Systeme in der Lage, Ausfälle durch einen einzigen Fehlerpunkt zu verhindern, wenn Daten aus zahlreichen Quellen und von unterschiedlichen Standorten kommen und in verschiedenen Formaten und Mengen vorliegen? Können sie Datenströme mit hoher Verfügbarkeit und Dauerhaftigkeit speichern?
Built by the original creators of Apache Kafka®, the most popular stream processing framework, Confluent enables stream processing on a global scale.
By integrating historical and real-time data into a single, central source of truth, Confluent makes it easy to empower modern, event-driven applications with a universal data pipeline and real-time data architecture. Unlock powerful new use cases with full scalability, performance, and reliability.