[Webinar] Bringing Flink to On-Prem and Private Clouds. Register Now
The goal of this post is to illustrate PUSH to web from Apache Kafka® with a hands-on example. Our business users are always wanting their data faster so they can take action faster—pushing it as the event happens, rather than running it through a data pipeline first, then running the analytics process on it, and asking for the data.
There are two ways to get your updated data more quickly in your web applications:
Frontends are still largely tooled for the first option, which requires all the moving parts that lead up to preparing the data for analytics to be orchestrated properly and without failure, in an incremental fashion.
In summary, we will:
Here’s what you’ll need before you proceed:
By the end of this tutorial, you will have an architecture that looks even more simple than this diagram:
Implementing the above architecture is actually very simple—just 27 lines of JavaScript, and for the purposes of this demo, you can run it with a single-node cluster, stood up with a one-liner using the Confluent CLI.
Download the Confluent Platform as a tar file, and extract it to a directory of your choice. I’m going to use ~/confluent-platform, extract the tarball, and enter the extracted directory.
Set the CONFLUENT_HOME environment variable to the directory you’ve extracted Confluent Platform to, and update your PATH variable based on this too:
export CONFLUENT_HOME=~/confluent-platform export PATH=$PATH:$CONFLUENT_HOME/bin
Get the Confluent CLI executable, and drop it in the bin directory:
curl -L --http1.1 https://cnfl.io/cli | sh -s -- -b $CONFLUENT_HOME/bin/
Let’s install the HTTP sink connector using the handy confluent-hub command:
confluent-hub install confluentinc/kafka-connect-http:latest
To create the connector, we first need to define the configuration. Create the following as a file called http-sink.json:
{ "name": "HttpSink", "config": { "topics": "testAlertsSSE", "tasks.max": "1", "connector.class": "io.confluent.connect.http.HttpSinkConnector", "http.api.url": "http://localhost:3344/receiveData", "key.converter": "org.apache.kafka.connect.storage.StringConverter", "header.converter": "org.apache.kafka.connect.storage.StringConverter", "value.converter": "org.apache.kafka.connect.storage.StringConverter", "confluent.topic.bootstrap.servers": "localhost:9092", "confluent.topic.replication.factor": "1", "reporter.bootstrap.servers": "localhost:9092", "reporter.error.topic.replication.factor": "1", "reporter.result.topic.replication.factor": "1" } }
Now load the connector using that file:
confluent local load httpsink -- -d http-sink.json
Enter the following command: confluent local start.
Once the local cluster starts, you’ll be able to verify that the sink connector is started.
Up to this point, it’s simply been setup and verification. Let’s move on to where it gets real!
I’ve written an example web service that listens for REST connections from the HTTP sink connector created above and forwards them as Server-Sent Events (SSE) to our frontend. To run it, follow these steps:
git clone https://github.com/derplarsen/testAlertsSSE.git
cd testAlertsSSE
npm install
npm start
Now that it’s running, let’s visit http://localhost:3344 in a modern browser. All being well, this is what the browser should look like:
Split the screen between the browser and terminal so that you can see the alerts sent to Kafka.
Also keep the terminal that you started npm start with visible. It should look like this:
Let’s now run a curl command to make sure the REST endpoint and SSE are working as expected. Open a new terminal, and run the following:
curl -X POST -d testme http://localhost:3344/receiveData -H "Content-Type: text/plain"
You should see a line in your Node.js terminal (where npm start was run) that reads req.body: testme. You should also see the message displayed in the web browser.
We’re now ready for the final step!
Now that we have tested that the Node.js application works, let’s produce a message into the Kafka topic testAlertsSSE, which the HTTP sink connector is connected to, in order to translate a Kafka message to a browser alert. Run the following command:
confluent local produce testAlertsSSE
You should see a cursor that is ready to accept input.
Type some text into the console while you’re looking at the web browser. When looking at your web browser at http://localhost:3344, you should see an alert pop up with the text you typed. You’ll also see that the messages received increment.
Congratulations! We just created an event-driven alerting system for Confluent Platform and JavaScript users. Now that the basics are done, you can:
Adding queue support to Kafka opens up a world of new possibilities for users, making Kafka even more versatile. By combining the strengths of traditional queue systems with Kafka’s robust log-based architecture, customers now have a solution that can handle both streaming and queue processing.
Confluent launches the general availability of a new JavaScript client for Apache Kafka®, a fully supported Kafka client for JavaScript and TypeScript programmers in Node.js environments.